Jump to content

Hsiang–Lawson's conjecture

From Wikipedia, the free encyclopedia
(Redirected from Lawson's conjecture)

In mathematics, Lawson's conjecture states that the Clifford torus is the only minimally embedded torus in the 3-sphere S3.[1][2] The conjecture was featured by the Australian Mathematical Society Gazette as part of the Millennium Problems series.[3]

In March 2012, Simon Brendle gave a proof of this conjecture, based on maximum principle techniques.[4]

References

[edit]
  1. ^ Lawson, H. Blaine Jr. (1970). "The unknottedness of minimal embeddings". Invent. Math. 11 (3): 183–187. Bibcode:1970InMat..11..183L. doi:10.1007/BF01404649. S2CID 122740925.
  2. ^ Lawson, H. Blaine Jr. (1970). "Complete minimal surfaces in S3". Ann. of Math. 92 (3): 335–374. doi:10.2307/1970625. JSTOR 1970625.
  3. ^ Norbury, Paul (2005). "The 12th problem" (PDF). The Australian Mathematical Society Gazette. 32 (4): 244–246.
  4. ^ Brendle, Simon (2013). "Embedded minimal tori in S3 and the Lawson conjecture". Acta Mathematica. 211 (2): 177–190. arXiv:1203.6597. doi:10.1007/s11511-013-0101-2. S2CID 119317563.